Reconfigurable Intelligent Surface-Aided Full-Duplex mmWave MIMO: Channel Estimation, Passive and Hybrid Beamforming

03/25/2023
by   Songjie Yang, et al.
0

Millimeter wave (mmWave) full-duplex (FD) is a promising technique for improving capacity by maximizing the utilization of both time and the rich mmWave frequency resources. Still, it has restrictions due to FD self-interference (SI) and mmWave's limited coverage. Therefore, this study dives into FD mmWave MIMO with the assistance of reconfigurable intelligent surfaces (RIS) for capacity improvement. First, we demonstrate the angular-domain reciprocity of FD antenna arrays under the far-field planar wavefront assumption. Accordingly, a strategy for joint downlink-uplink (DL-UL) channel estimation is presented. For estimating the SI channel, the direct channel, and the cascaded channel, the Khatri-Rao product-based compressive sensing (KR-CS), distributed CS (D-CS), and two-stage multiple measurement vector-based D-CS (M-D-CS) frameworks are proposed, respectively. Additionally, we propose a passive beamforming optimization solution based on the angular-domain cascaded channel. With hybrid beamforming architectures, a novel hybrid weighted minimum mean squared error method for SI cancellation (H-WMMSE-SIC) is proposed. Simulations have revealed that joint DL-UL processing significantly improves estimation performance in comparison to separate DL/UL channel estimation. Particularly, when the interference-to-noise ratio is less than 35 dB, our proposed H-WMMSE-SIC offers spectral efficiency performance comparable to fully-digital WMMSE-SIC. Finally, the computational complexity is analyzed for our proposed methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro